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Let a > 0 and suppose that the 1-step distribution D for random walk on Z¢
decays as D(z) ~ |z|~%7% such that its Fourier transform D(k) = Y, e**D(z)
satisfies
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for some v, € (0,00) and € > 0. The following long-range Kac potential, for any

L € [1,00), satisfies the above property with v, = O(L*"?) [3]:
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where h(z) = |2|~9%(1 + O(|z|%)) is a rotation-invariant function on R?.

Let ¢1(x) denote the two-point functions for random walk and self-avoiding walk
whose 1-step distribution is given by the above D and for oriented percolation on
7% x 7, whose bond-occupation probability for each bond ((u, s), (v, s+ 1)) is given
by pD(v — u), independently of s € Z,, where p > 0 is the percolation parameter.
More precisely,

D(x) = (x € 2, (2)
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where [ [o<; i<, (1 —du,w,) is the self-avoiding constraint on w, and {(0,0) — (z,)}
is the event that either (z,t) = (0,0) or there is a consecutive sequence of occupied
bonds from (0,0) to (z,t¢) in the time-increasing direction. The order-r gyration
radius §t(”, defined as

£ = <erzd \x!%t(x)>1/"7 (4)
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represents a typical end-to-end distance of a linear structure of length ¢ or a typical
spatial size of a cluster at time ¢. It has been expected (and is certainly true for
random walk in any dimension) that, above the common upper-critical dimension
d. = 2(a A 2) for self-avoiding walk and oriented percolation, for every r € (0, a),
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The conjecture was proved to be affirmative for self-avoiding walk, but only for small
r<aA?2[d].

In my recent joint work with L.-C. Chen [3], we have proved the following sharp
asymptotics:
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Theorem 1 ([3]). Consider the aforementioned three long-range models. For ran-
dom walk in any dimension with any L, and for self-avoiding walk and critical /sub-
critical oriented percolation for d > 2(a A 2) with L > 1, the following holds for
every r € (0,a): there are constants C1,Cy = 1+ O(L™%) (C1 = Cy = 1 for random
walk) and € > 0 such that, as m / m,
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where m, is the radius of convergence for the sequence ) 4 @(T).

In fact, the above C1, Cy are the following model-dependent constants [1, 2, 4]:

eiktm T o
Y wila) ~ Cimg?, Zoeps D) e, (7)
zezd #eo > weza pr(T) oo

Theorem 2 ([3]). Under the same condition as in Theorem 1,
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As far as we notice, even for random walk, the sharp asymptotics in the above
two theorems are new. By |z1|" < |z|” < d'/? Z;-lzl |z;|" and the Z%-symmetry of
the models, Theorem 2 immediately proves the conjecture (5) for all r € (0, ).

The proof is based on the derivatives of the lace expansion and the new fractional-
moment analysis for the derivatives of the expansion coefficients, initiated in [2]. It
is worth emphasizing that the same proof applies to finite-range models, for which
« is considered to be infinity.

In the talk, I explain the general framework to treat all three models simultane-
ously and show some complex analysis for the derivation of the right constants in
the asymptotics.
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